Browse Source

feat(training): updated expected result for ex05/q1

pull/2504/head
nprimo 8 months ago committed by Niccolò Primo
parent
commit
1f9c0db5ad
  1. 84
      subjects/ai/training/audit/README.md

84
subjects/ai/training/audit/README.md

@ -128,70 +128,66 @@ Having a 99% ROC AUC is not usual. The data set we used is easy to classify. On
###### For question 1, are the scores outputted close to the scores below? Some of the algorithms use random steps (random sampling used by the `RandomForest`). I used `random_state = 43` for the Random Forest, the Decision Tree and the Gradient Boosting.
```console
# Linear regression
~~~
Linear Regression
TRAIN
r2 on the train set: 0.34823544284172625
MAE on the train set: 0.533092001261455
MSE on the train set: 0.5273648371379568
r2 score: 0.6054131599242079
MAE: 0.5330920012614552
MSE: 0.5273648371379568
TEST
r2 on the test set: 0.3551785428138914
MAE on the test set: 0.5196420310323713
MSE on the test set: 0.49761195027083804
# SVM
r2 score: 0.6128959462132963
MAE: 0.5196420310323714
MSE: 0.49761195027083804
~~~
SVM
TRAIN
r2 on the train set: 0.6462366150965996
MAE on the train set: 0.38356451633259875
MSE on the train set: 0.33464478671339165
r2 score: 0.749610858293664
MAE: 0.3835645163325988
MSE: 0.3346447867133917
TEST
r2 on the test set: 0.6162644671183826
MAE on the test set: 0.3897680598426786
MSE on the test set: 0.3477101776543003
# Decision Tree
r2 score: 0.7295080649899683
MAE: 0.38976805984267887
MSE: 0.3477101776543005
~~~
Decision Tree
TRAIN
r2 on the train set: 0.9999999999999488
MAE on the train set: 1.3685733933909677e-08
MSE on the train set: 6.842866883530944e-14
r2 score: 1.0
MAE: 4.221907539810565e-17
MSE: 9.24499456646287e-32
TEST
r2 on the test set: 0.6263651902480918
MAE on the test set: 0.4383758696244002
MSE on the test set: 0.4727017198871596
# Random Forest
r2 score: 0.6228217144931267
MAE: 0.4403051356589147
MSE: 0.4848526395290697
~~~
Random Forest
TRAIN
r2 on the train set: 0.9705418471542886
MAE on the train set: 0.11983836612191189
MSE on the train set: 0.034538356420577995
r2 score: 0.9741263135396302
MAE: 0.12000198560508221
MSE: 0.03458015083247723
TEST
r2 on the test set: 0.7504673649554309
MAE on the test set: 0.31889891600404635
MSE on the test set: 0.24096164834441108
# Gradient Boosting
r2 score: 0.8119778189909694
MAE: 0.3194169859011629
MSE: 0.24169750554364758
~~~
Gradient Boosting
TRAIN
r2 on the train set: 0.7395782392433273
MAE on the train set: 0.35656543036682264
MSE on the train set: 0.26167490389525294
r2 score: 0.8042086499063386
MAE: 0.35656543036682264
MSE: 0.26167490389525294
TEST
r2 on the test set: 0.7157456298013534
MAE on the test set: 0.36455447680396397
MSE on the test set: 0.27058170064218096
r2 score: 0.7895081234643192
MAE: 0.36455447680396397
MSE: 0.27058170064218096
```
It is important to notice that the Decision Tree overfits very easily. It learns easily the training data but is not able to extrapolate on the test set. This algorithm is not used a lot because of its overfitting ability.

Loading…
Cancel
Save