#### NLP-enriched News Intelligence platform ##### Preliminary ``` project │ README.md │ environment.yml │ └───data │ │ topic_classification_data.csv │ └───results │ │ topic_classifier.pkl │ │ learning_curves.png │ │ enhanced_news.csv | |───nlp_engine │ ``` ###### Does the structure of the project look like the above? ###### Does the environment contain all libraries used and their versions that are necessary to run the code? ##### Scraper ##### There are at least 300 news articles stored in the file system or the database. ###### Run the scraper with `python scraper_news.py` and fetch 3 documents. The scraper is not expected to fetch 3 documents and stop by itself, you can stop it manually. Does it run without any error and store the 3 files as expected? ##### Topic classifier ###### Are the learning curves provided? ###### Do the learning curves prove the topics classifier is trained correctly - without overfitting? ###### Can you run the topic classifier model on the test set without any error? ###### Does the topic classifier score an accuracy higher than 95%? ##### Scandal detection ###### Does the `README.md` explain the choice of embeddings and distance? ###### Does the DataFrame flag the top 10 articles with the highest likelihood of environmental scandal? ###### Is the distance or similarity saved in the DataFrame? ##### NLP engine output on 300 articles ###### Does the DataFrame contain 300 different rows? ###### Are the columns of the DataFrame as expected? ``` Date scraped (date) Title (str) URL (str) Body (str) Org (str) Topics (list str) Sentiment (list float or float) Scandal_distance (float) Top_10 (bool) ``` ##### Analyse the DataFrame with 300 articles: relevance of the topics matched, relevance of the sentiment, relevance of the scandal detected and relevance of the companies matched. The algorithms are not 100% accurate, so you should expect a few issues in the results. ##### NLP engine on 3 articles ###### Can you run `python nlp_enriched_news.py` without any error? ###### Does the output of the NLP engine correspond to the output below? ```prompt python nlp_enriched_news.py Enriching : Cleaning document ... (optional) ---------- Detect entities ---------- Detected companies which are and ---------- Topic detection ---------- Text preprocessing ... The topic of the article is: ---------- Sentiment analysis ---------- Text preprocessing ... (optional) The title which is is <sentiment> The body of the article is <sentiment> ---------- Scandal detection ---------- Computing embeddings and distance ... Environmental scandal detected for <entity> ``` ##### Analyse the output: relevance of the topic(s) matched, relevance of the sentiment, relevance of the scandal detected (if detected on the three articles) and relevance of the company(ies) matched.