mirror of https://github.com/01-edu/public.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
3.1 KiB
3.1 KiB
NLP-enriched News Intelligence platform
Preliminary
project
│ README.md
│ environment.yml
│
└───data
│ │ topic_classification_data.csv
│
└───results
│ │ topic_classifier.pkl
│ │ learning_curves.png
│ │ enhanced_news.csv
|
|───nlp_engine
│
Does the structure of the project is as below ?
Does the readme file give an introduction of the project, show the username, describe the feature engineering and show the best score the on the leaderboard ?
Does the environment contain all libraries used and their versions that are necessary to run the code ?
Scrapper
There are at least 300 news articles stored in the file system or the database.
Run the scrapper with python scrapper_news.py
and fetch 3 documents. The scrapper is not expected to fetch 3 documents and stop by itself, you can stop it manually. It runs without any error and stores the 3 files as expected.
Topic classifier
Are the learning curves provided ?
Do the learning curves prove the topics classifier is trained without correctly - without overfitting ?
Can you run the topic classfier model on the test set without any error ?
Does the topic classifier score an accuracy higher than 95% ?
Scandal detection
Does the README.md
explain the choice of embeddings and distance ?
Does the DataFrame flag the top 10 articles with the highest likelihood of environmental scandal ?
Is the distance or similarity saved in the DataFrame ?
NLP engine output on 300 articles
Does the DataFrame contain 300 different rows ?
Does the columns of the DataFrame are as expected ?
Date scrapped (date)
Title (str)
URL (str)
Body (str)
Org (str)
Topics (list str)
Sentiment (list float or float)
Scandal_distance (float)
Top_10 (bool)
Analyse the DataFrame with 300 articles: relevance of the topics matched, relevance of the sentiment, relevance of the scandal detected and relevance of the companies matched. The algorithms are not 100% accurate so you should expect a few issues in the results.
NLP engine on 3 articles
Can you run python nlp_enriched_news.py
without any error ?
Does the output of the nlp engine correspond to the output below?
python nlp_enriched_news.py
Enriching <URL>:
Cleaning document ... (optional)
---------- Detect entities ----------
Detected <X> companies which are <company_1> and <company_2>
---------- Topic detection ----------
Text preprocessing ...
The topic of the article is: <topic>
---------- Sentiment analysis ----------
Text preprocessing ... (optional)
The title which is <title> is <sentiment>
The body of the article is <sentiment>
---------- Scandal detection ----------
Computing embeddings and distance ...
Environmental scandal detected for <entity>