mirror of https://github.com/01-edu/public.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
jrosendo
73fda016e5
|
2 years ago | |
---|---|---|
.. | ||
README.md | 2 years ago |
README.md
Exercise 0: Environment and libraries
The exercice is validated is all questions of the exercice are validated.
Activate the virtual environment. If you used conda
run conda activate your_env
.
Run python --version
.
Does it print Python 3.x
? x >= 8
Does import jupyter
, import numpy
, import pandas
, import matplotlib
and import sklearn
run without any error?
Exercise 1: Imputer 1
The exercise is validated is all questions of the exercise are validated.
The question 1 is validated if the imp_mean.statistics_
returns:
array([ 4., 13., 6.])
The question 2 is validated if the filled train set is:
array([[ 7., 6., 5.],
[ 4., 13., 5.],
[ 1., 20., 8.]])
The question 3 is validated if the filled test set is:
array([[ 4., 1., 2.],
[ 7., 13., 9.],
[ 4., 2., 4.]])
Exercise 2: Scaler
The exercise is validated is all. questions of the exercise are validated.
The question 1 is validated if the scaled train set is as below. And by definition, the mean on the axis 0 should be array([0., 0., 0.])
and the standard deviation on the axis 0 should be array([1., 1., 1.])
.
array([[ 0. , -1.22474487, 1.33630621],
[ 1.22474487, 0. , -0.26726124],
[-1.22474487, 1.22474487, -1.06904497]])
The question 2 is validated if the scaled test set is:
array([[ 1.22474487, -1.22474487, 0.53452248],
[ 2.44948974, 3.67423461, -1.06904497],
[ 0. , 1.22474487, 0.53452248]])
Exercise 3: One hot Encoder
The exercise is validated is all questions of the exercise are validated.
The question 1 is validated if the output is:
| | ('C++',) | ('Java',) | ('Python',) |
|---:|-----------:|------------:|--------------:|
| 0 | 0 | 0 | 1 |
| 1 | 0 | 1 | 0 |
| 2 | 0 | 1 | 0 |
| 3 | 1 | 0 | 0 |
The question 2 is validated if the output is:
| | ('C++',) | ('Java',) | ('Python',) |
|---:|-----------:|------------:|--------------:|
| 0 | 0 | 0 | 1 |
| 1 | 0 | 1 | 0 |
| 2 | 0 | 0 | 0 |
| 3 | 1 | 0 | 0 |
Exercise 4: Ordinal Encoder
The exercise is validated is all questions of the exercise are validated
The question 1 is validated if the output of the Ordinal Encoder on the train set is:
array([[2.],
[0.],
[1.]])
Check that enc.categories_
returns[array(['bad', 'neutral', 'good'], dtype=object)]
.
The question 2 is validated if the output of the Ordinal Encoder on the test set is:
array([[2.],
[2.],
[0.]])
Exercise 5: Categorical variables
The exercise is validated is all questions of the exercise are validated
The question 1 is validated if the number of unique values per feature outputted are:
age 6
menopause 3
tumor-size 11
inv-nodes 6
node-caps 2
deg-malig 3
breast 2
breast-quad 5
irradiat 2
dtype: int64
The question 2 is validated if the transformed test set by the OneHotEncoder
fitted on the train set is as below. Make sure the transformer takes as input a dataframe with the columns in the order defined ['node-caps' , 'breast', 'breast-quad', 'irradiat']
:
#First 10 rows:
array([[1., 0., 1., 0., 0., 1., 0., 0., 0., 1., 0.],
[1., 0., 1., 0., 0., 1., 0., 0., 0., 1., 0.],
[1., 0., 1., 0., 0., 0., 0., 1., 0., 1., 0.],
[1., 0., 0., 1., 0., 1., 0., 0., 0., 1., 0.],
[1., 0., 0., 1., 0., 0., 0., 1., 0., 1., 0.],
[1., 0., 0., 1., 0., 0., 1., 0., 0., 1., 0.],
[1., 0., 0., 1., 0., 0., 1., 0., 0., 1., 0.],
[1., 0., 0., 1., 0., 1., 0., 0., 0., 1., 0.],
[1., 0., 0., 1., 0., 0., 1., 0., 0., 1., 0.],
[0., 1., 1., 0., 0., 0., 1., 0., 0., 0., 1.]])
The question 3 is validated if the transformed test set by the OrdinalEncoder
fitted on the train set is as below with the columns ordered as ["menopause", "age", "tumor-size","inv-nodes", "deg-malig"]
:
#First 10 rows:
array([[1., 2., 5., 0., 1.],
[1., 3., 4., 0., 1.],
[1., 2., 4., 0., 1.],
[1., 3., 2., 0., 1.],
[1., 4., 3., 0., 1.],
[1., 4., 5., 0., 0.],
[2., 5., 4., 0., 1.],
[2., 5., 8., 0., 1.],
[0., 2., 3., 0., 2.],
[1., 3., 6., 4., 2.]])
The question 4 is validated if the column transformer transformed that is fitted on the X_train, transformed the X_test as:
# First 2 rows:
array([[1., 0., 1., 0., 0., 1., 0., 0., 0., 1., 0., 1., 2., 5., 0., 1.],
[1., 0., 1., 0., 0., 1., 0., 0., 0., 1., 0., 1., 3., 4., 0., 1.]])
Exercise 6: Pipeline
The question 1 is validated if the prediction on the test set are:
array([0, 0, 2, 1, 2, 0, 2, 1, 1, 1, 0, 1, 2, 0, 1, 1, 0, 0, 2, 2, 0, 0,
0, 2, 2, 2, 0, 1, 0, 0, 1, 0, 1, 1, 2, 2, 1, 2, 1, 1, 1, 2, 1, 2,
0, 1, 1, 1, 1, 1])
and the score on the test set is 98%.
Note: Keep in mind that having a 98% accuracy is not common when working with real life data. Every time you have a score > 97% check that there's no leakage in the data. On financial data set, the ratio signal to noise is low. Trying to forecast stock prices is a difficult problem. Having an accuracy higher than 70% should be interpreted as a warning to check data leakage!